An Algebraic Geometric Approach to the Identification of a Class of Linear Hybrid Systems∗
نویسندگان
چکیده
We propose an algebraic geometric solution to the identification of a class of linear hybrid systems. We show that the identification of the model parameters can be decoupled from the inference of the hybrid state and the switching mechanism generating the transitions, hence we do not constraint the switches to be separated by a minimum dwell time. The decoupling is obtained from the so-called hybrid decoupling constraint, which establishes a connection between linear hybrid system identification, polynomial factorization and hyperplane clustering. In essence, we represent the number of discrete states n as the degree of a homogeneous polynomial p and the model parameters as factors of p. We then show that one can estimate n from a rank constraint on the data, the coefficients of p from a linear system, and the model parameters from the derivatives of p. The solution is closed form if and only if n ≤ 4. Once the model parameters have been identified, the estimation of the hybrid state becomes a simpler problem. Although our algorithm is designed for noiseless data, we also present simulation results with noisy data.
منابع مشابه
Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method
Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...
متن کاملVoltage Regulation of DC-DC Series Resonant Converter Operating in Discontinuous Conduction Mode: The Hybrid Control Approach
Dynamic modeling and control of dc-dc series resonant converter (SRC) especially when operating in discontinuous conduction mode (DCM) is still a challenge in power electronics. Due to semiconductors switching, SRC is naturally represented as a switched linear system, a class of hybrid systems. Nevertheless, the hybrid nature of the SRC is commonly neglected and it is modeled as a purely contin...
متن کاملFUZZY INCLUSION LINEAR SYSTEMS
In this manuscript, we introduce a new class of fuzzy problems, namely ``fuzzy inclusion linear systems" and propose a fuzzy solution set for it. Then, we present a theoretical discussion about the relationship between the fuzzy solution set of a fuzzy inclusion linear system and the algebraic solution of a fuzzy linear system. New necessary and sufficient conditions are derived for obtain...
متن کاملStability and numerical solution of time variant linear systems with delay in both the state and control
In this paper, stability for uncertain time variant linear systems with time delay is studied. A new sufficient condition for delay-dependent systems is given in matrix inequality form which depends on the range of delay. Then, we introduce a new direct computational method to solve delay systems. This method consists of reducing the delay problem to a set of algebraic equations by first expand...
متن کاملThe Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach
In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...
متن کامل